Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703120

RESUMO

Two-dimensional (2D) semiconducting materials have attracted significant interest as promising candidates for channel materials owing to their high mobility and gate tunability at atomic-layer thickness. However, the development of 2D electronics is impeded due to the difficulty in formation of high-quality dielectrics with a clean and nondestructive interface. Here, we report the direct van der Waals epitaxial growth of a molecular crystal dielectric, Sb2O3, on 2D materials by physical vapor deposition. The grown Sb2O3 nanosheets showed epitaxial relations of 0 and 180° with the 2D template, maintaining high crystallinity and an ultrasharp vdW interface with the 2D materials. As a result, the Sb2O3 nanosheets exhibited a high breakdown field of 18.6 MV/cm for 2L Sb2O3 with a thickness of 1.3 nm and a very low leakage current of 2.47 × 10-7 A/cm2 for 3L Sb2O3 with a thickness of 1.96 nm. We also observed two types of grain boundaries (GBs) with misorientation angles of 0 and 60°. The 0°-GB with a well-stitched boundary showed higher electrical and thermal stabilities than those of the 60°-GB with a disordered boundary. Our work demonstrates a method to epitaxially grow molecular crystal dielectrics on 2D materials without causing any damage, a requirement for high-performance 2D electronics.

2.
Adv Mater ; 36(14): e2310498, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38169481

RESUMO

Monolayer transition metal dichalcogenides (TMDs) have drawn significant attention for their potential in optoelectronic applications due to their direct band gap and exceptional quantum yield. However, TMD-based light-emitting devices have shown low external quantum efficiencies as imbalanced free carrier injection often leads to the formation of non-radiative charged excitons, limiting practical applications. Here, electrically confined electroluminescence (EL) of neutral excitons in tungsten diselenide (WSe2) light-emitting transistors (LETs) based on the van der Waals heterostructure is demonstrated. The WSe2 channel is locally doped to simultaneously inject electrons and holes to the 1D region by a local graphene gate. At balanced concentrations of injected electrons and holes, the WSe2 LETs exhibit strong EL with a high external quantum efficiency (EQE) of ≈8.2 % at room temperature. These experimental and theoretical results consistently show that the enhanced EQE could be attributed to dominant exciton emission confined at the 1D region while expelling charged excitons from the active area by precise control of external electric fields. This work shows a promising approach to enhancing the EQE of 2D light-emitting transistors and modulating the recombination of exciton complexes for excitonic devices.

3.
Adv Mater ; 35(52): e2306092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37739451

RESUMO

Conversion of sunlight and organic carbon substrates to sustainable energy sources through microbial metabolism has great potential for the renewable energy industry. Despite recent progress in microbial photosynthesis, the development of microbial platforms that warrant efficient and scalable fuel production remains in its infancy. Efficient transfer and retrieval of gaseous reactants and products to and from microbes are particular hurdles. Here, inspired by water lily leaves floating on water, a microbial device designed to operate at the air-water interface and facilitate concomitant supply of gaseous reactants, smooth capture of gaseous products, and efficient sunlight delivery is presented. The floatable device carrying Rhodopseudomonas parapalustris, of which nitrogen fixation activity is first determined through this study, exhibits a hydrogen production rate of 104 mmol h-1  m-2 , which is 53 times higher than that of a conventional device placed at a depth of 2 cm in the medium. Furthermore, a scaled-up device with an area of 144 cm2 generates hydrogen at a high rate of 1.52 L h-1  m-2 . Efficient nitrogen fixation and hydrogen generation, low fabrication cost, and mechanical durability corroborate the potential of the floatable microbial device toward practical and sustainable solar energy conversion.

4.
Nat Nanotechnol ; 18(7): 754-762, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37106047

RESUMO

Storing solar energy in chemical bonds aided by heterogeneous photocatalysis is desirable for sustainable energy conversion. Despite recent progress in designing highly active photocatalysts, inefficient solar energy and mass transfer, the instability of catalysts and reverse reactions impede their practical large-scale applications. Here we tackle these challenges by designing a floatable photocatalytic platform constructed from porous elastomer-hydrogel nanocomposites. The nanocomposites at the air-water interface feature efficient light delivery, facile supply of water and instantaneous gas separation. Consequently, a high hydrogen evolution rate of 163 mmol h-1 m-2 can be achieved using Pt/TiO2 cryoaerogel, even without forced convection. When fabricated in an area of 1 m2 and incorporated with economically feasible single-atom Cu/TiO2 photocatalysts, the nanocomposites produce 79.2 ml of hydrogen per day under natural sunlight. Furthermore, long-term stable hydrogen production in seawater and highly turbid water and photoreforming of polyethylene terephthalate demonstrate the potential of the nanocomposites as a commercially viable photocatalytic system.

5.
Nano Lett ; 23(7): 3085-3089, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36780400

RESUMO

Two-dimensional (2D) semiconducting materials, such as MoS2, are widely studied owing to their great potential in advanced electronic devices. However, MoS2 films grown using chemical vapor deposition (CVD) exhibit lower-than-expected properties owing to numerous defects. Among them, grain boundary (GB) is a critical parameter that determines electrical and mechanical properties of MoS2. Herein, we report the gate-tunable electrostatic friction of GBs in CVD-grown MoS2. Using atomic force microscopy (AFM), we found that electrostatic friction of MoS2 is generated by the Coulomb interaction between tip and carriers of MoS2, which is associated with the local band structure of GBs. Therefore, electrostatic friction is enhanced by localized charge carrier distribution at GB, which is linearly related to the loading force of the tip. Our study shows a strong correlation between electrostatic friction and localized band structure in MoS2 GB, providing a novel method for identifying and characterizing GBs of polycrystalline 2D materials.

6.
Small ; 19(17): e2205224, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693802

RESUMO

Transition metal dichalcogenides exhibit phase transitions through atomic migration when triggered by various stimuli, such as strain, doping, and annealing. However, since atomically thin 2D materials are easily damaged and evaporated from these strategies, studies on the crystal structure and composition of transformed 2D phases are limited. Here, the phase and composition change behavior of laser-irradiated molybdenum ditelluride (MoTe2 ) in various stacked geometry are investigated, and the stable laser-induced phase patterning in hexagonal boron nitride (hBN)-encapsulated MoTe2 is demonstrated. When air-exposed or single-side passivated 2H-MoTe2 are irradiated by a laser, MoTe2 is transformed into Te or Mo3 Te4 due to the highly accumulated heat and atomic evaporation. Conversely, hBN-encapsulated 2H-MoTe2 transformed into a 1T' phase without evaporation or structural degradation, enabling stable phase transitions in desired regions. The laser-induced phase transition shows layer number dependence; thinner MoTe2 has a higher phase transition temperature. From the stable phase patterning method, the low contact resistivity of 1.13 kΩ µm in 2H-MoTe2 field-effect transistors with 1T' contacts from the seamless heterophase junction geometry is achieved. This study paves an effective way to fabricate monolithic 2D electronic devices with laterally stitched phases and provides insights into phase and compositional changes in 2D materials.

7.
Adv Mater ; 34(41): e2204982, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36000232

RESUMO

Van der Waals (vdW) heterostructures have drawn much interest over the last decade owing to their absence of dangling bonds and their intriguing low-dimensional properties. The emergence of 2D materials has enabled the achievement of significant progress in both the discovery of physical phenomena and the realization of superior devices. In this work, the group IV metal chalcogenide 2D-layered Ge4 Se9 is introduced as a new selection of insulating vdW material. 2D-layered Ge4 Se9 is synthesized with a rectangular shape using the metalcorganic chemical vapor deposition system using a liquid germanium precursor at 240 °C. By stacking the Ge4 Se9 and MoS2 , vdW heterostructure devices are fabricated with a giant memory window of 129 V by sweeping back gate range of ±80 V. The gate-independent decay time reveals that the large hysteresis is induced by the interfacial charge transfer, which originates from the low band offset. Moreover, repeatable conductance changes are observed over the 2250 pulses with low non-linearity values of 0.26 and 0.95 for potentiation and depression curves, respectively. The energy consumption of the MoS2 /Ge4 Se9 device is about 15 fJ for operating energy and the learning accuracy of image classification reaches 88.3%, which further proves the great potential of artificial synapses.

8.
Phys Chem Chem Phys ; 24(18): 10684-10711, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35485601

RESUMO

Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because 2D materials are composed of two surfaces with no dangling bond, covalent functionalization enables us to improve or precisely modify the electrical, mechanical, and chemical properties. In this review, we summarize the covalent functionalization methods and related changes in properties. First, we discuss possible sites for functionalization. Consequently, functionalization techniques are introduced, followed by the direct synthesis of functionalized 2D materials and characterization methods of functionalized 2D materials. Finally, we suggest how the issues may be solved to enlarge the research area and understanding of the chemistry of 2D materials. This review will help in understanding the functionalization of 2D materials.

9.
Langmuir ; 37(46): 13712-13728, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751580

RESUMO

The evolution of the normal stress and microstructure in the drying process of bidisperse colloidal films is studied using the Brownian dynamics simulation. Here, we show that the formation process of small-on-top stratification can be explained by normal stress development. At high PeL's, a stratified layer with small particles is formed near the interface. The accumulated particles near the interface induce the localization of normal stress so that the normal stress at the interface increases from the beginning of drying. We analyze this stress development from two points of view, on the global length scale and particle length scale. On the global length scale, the localization of normal stress is quantified by the scaled normal stress difference between the interface and substrate. For all PeL's tested in this study, the scaled normal stress difference increases until the accumulation region reaches the substrate. After the maximum, the stress difference remains at the maximum at lower PeL's, while it decreases at higher PeL's. The microstructural analysis shows that this stress development is explained through the evolution of the particle contact number distribution at the interface and substrate. On the particle length scale, we derive the scaled local force applied to each type of particle by decomposing the local normal stress. At high PeL's, the scaled local force for the large particle is large compared to that for the small particle near the interface, indicating that the large particles are strongly pushed away from the interface. Associating the volume fraction profile with the local force field, we suggest that the strong scaled force for the large particle is attributed to the significant increase in the average number of small particles in contact with large ones. This study has significance in probing the drying mechanism of bidisperse colloidal films and the stratification mechanism.


Assuntos
Dessecação , Fenômenos Mecânicos
10.
Medicine (Baltimore) ; 100(14): e25270, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33832090

RESUMO

ABSTRACT: Del-1 has been linked to the pathogenesis of various cancers, including breast cancer. However, the regulation of Del-1 expression remains unclear. We previously reported the interaction between microRNA-137 (miR-137) and the Del-1 gene. In this study, we investigated miR-496 and miR-137 as regulators of Del-1 expression in triple negative breast cancer (TNBC). Del-1 mRNA and miR-496 were measured by quantitative PCR in breast cancer cells (MDA-MB-231, MCF7, SK-BR3, and T-47D) and tissues from 30 patients with TNBC. The effects of miR-496 on cell proliferation, migration, and invasion were determined with MTT, wound healing, and Matrigel transwell assays, respectively. In MDA-MB-231 cells, miR-496 levels were remarkably low and Del-1 mRNA levels were higher than in other breast cancer cell lines. Luciferase reporter assays revealed that miR-496 binds the 3'-UTR of Del-1 and Del-1 expression is downregulated by miR-496 mimics. Furthermore, miR-496 inhibited the proliferation, migration, and invasion of MDA-MB-231 cells. The effects of miR-496 on cell proliferation were additive with those of miR-137, another miRNA that regulates Del-1 expression. Moreover, in the 30 TNBC specimens, miR-496 was downregulated (P < .005) and the levels of Del-1 in the plasma were significantly elevated as compared with in normal controls (P = .0142). The Cancer Genome Atlas (TCGA) data showed the correlation of miR-496 expression with better overall survival in patients with early TNBC. In in silico and in vitro analyses, we showed that Del-1 is a target of miR-496 in TNBC and thereby affects cancer progression. Our findings suggest that miR-496 and miR-137 additively target Del-1 and act as modulating factors in TNBC. They are potentially new biomarkers for patients with TNBC.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , MicroRNAs/genética , Invasividade Neoplásica/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
11.
RSC Adv ; 11(37): 22826-22834, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480445

RESUMO

Silver (Ag) nanocrystals with a dendritic structure have attracted intensive attention because of their unique structural properties, which include abundant sharp corners and edges that provide a large number of active atoms. However, the synthesis of Ag dendrites via a simple and environmentally friendly method under ambient conditions remains a challenge. In this paper, we report a simple water-based green method for the production of biopolymer hydrogel beads embedded with Ag dendrites without using an additional reducing agent, stabilizer, or crosslinking agent. The obtained Ag dendrites exhibit a unique two-dimensional (2D) structure rather than a conventional three-dimensional structure because Ag+ ions are reduced on the surface of the solid-phase hydrogel beads and grow into crystals. Reasonable mechanisms explaining the formation of the nanocomposite hydrogel beads and the formation of 2D Ag dendrites in the hydrogel are proposed on the basis of our observations and results. The hydrogel beads embedded the 2D Ag dendrites were used as an environmentally friendly catalytic reactor, and their catalytic performance was evaluated by adopting the reduction of 4-nitrophenol to 4-aminophenol with NaBH4 as a model reaction.

12.
RSC Adv ; 11(55): 34589-34598, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494773

RESUMO

The importance of and demand for eco-friendly syntheses of metal nanocrystals are increasing. In this study, a novel protocol for the one-pot, template/seed-free, and completely green synthesis of rose-shaped Au nanostructures with unique three-dimensional hierarchical structures was developed. The synthesis of the nanostructures was carried out at room temperature using water as a reaction medium and an eco-friendly biopolymer (sodium salt of alginic acid (Na-alginate)) as a reducing agent. The morphologies of the Au nanostructures were controlled by adjusting the amount of capping ligand (polyvinylpyrrolidone (PVP)) in the reaction mixture, and a limited ligand protection (LLP) strategy was used to induce the formation of rose-shaped Au nanostructures. A formation mechanism for the rose-shaped Au nanostructures was proposed on the basis of structural characterizations and the shape evolution of the nanostructures. The unique structural features of the rose-shaped nanostructures, which include a high surface roughness, a large surface area-to-volume ratio, and abundant edges and sharp tips, motivated us to use them as a high-performance catalyst. They were used as an environmentally benign catalyst in an organic reaction to remove a hazardous chemical from an aqueous medium: specifically, the hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride. Without an additional supporting material, the rose-shaped Au nanostructures showed outstanding catalytic activity that was maintained when the catalyst was recycled and used a total of five times.

13.
ACS Appl Mater Interfaces ; 13(1): 1245-1252, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33356110

RESUMO

Monolayer transition metal dichalcogenides (TMDs) are promising for optoelectronics because of their high optical quantum yield and strong light-matter interaction. In particular, the van der Waals (vdW) heterostructures consisting of monolayer TMDs sandwiched by large gap hexagonal boron nitride have shown great potential for novel optoelectronic devices. However, a complicated stacking process limits scalability and practical applications. Furthermore, even though lots of efforts, such as fabrication of vdW heterointerfaces, modification of the surface, and structural phase transition, have been devoted to preserve or modulate the properties of TMDs, high environmental sensitivity and damage-prone characteristics of TMDs make it difficult to achieve a controllable technique for surface/interface engineering. Here, we demonstrate a novel way to fabricate multiple two-dimensional (2D) vdW heterostructures consisting of alternately stacked MoS2 and MoOx with enhanced photoluminescence (PL). We directly oxidized multilayer MoS2 to a MoOx/1 L-MoS2 heterostructure with atomic layer precision through a customized oxygen plasma system. The monolayer MoS2 covered by MoOx showed an enhanced PL intensity 3.2 and 6.5 times higher in average than the as-exfoliated 1 L- and 2 L-MoS2 because of preserved crystallinity and compensated dedoping by MoOx. By using layer-by-layer oxidation and transfer processes, we fabricated the heterostructures of MoOx/MoS2/MoOx/MoS2, where the MoS2 monolayers are separated by MoOx. The heterostructures showed the multiplied PL intensity as the number of embedded MoS2 layers increases because of suppression of the nonradiative trion formation and interlayer decoupling between stacked MoS2 layers. Our work shows a novel way toward the fabrication of 2D material-based multiple vdW heterostructures and our layer-by-layer oxidation process is beneficial for the fabrication of high performance 2D optoelectronic devices.

14.
Int J Mol Sci ; 20(24)2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817673

RESUMO

MicroRNAs (miRNAs) can be used to target a variety of human malignancy by targeting their oncogenes or tumor suppressor genes. The developmental endothelial locus-1 (Del-1) might be under miRNA regulation. This study investigated microRNA-137 (miR-137) function and Del-1 expression in triple-negative breast cancer (TNBC) cells and tissues. Del-1 mRNA and miRNA-137 levels were determined via qRT-PCR in breast cancer cells (MDA-MB-231, MCF7, SK-BR3, and T-47D) and tissues from 30 patients with TNBC. The effects of miR-137 on cell proliferation, migration, and invasion were determined using MTT assays, wound healing, and Matrigel transwell assays. The luciferase reporter assay revealed direct binding of miR-137 to the 3'-UTR of Del-1. miR-137 inhibited cell proliferation, migration, and invasion of MDA-MB-231 cells. Among the 30 TNBC specimens, miR-137 was downregulated and Del-1 level in plasma was significantly elevated relative to normal controls. It is concluded that miR-137 regulates Del-1 expression in TNBC by directly binding to the Del-1 gene and cancer progression. The results implicate miR-137 as a new therapeutic biomarker for patients with TNBC.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/fisiologia , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ensaio de Imunoadsorção Enzimática , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , MicroRNAs/genética , Plasmídeos/genética , Neoplasias de Mama Triplo Negativas/genética
15.
ACS Omega ; 4(3): 5382-5391, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459704

RESUMO

Fe x O y H z nanostructures were incorporated into commercially available and highly porous alumina using the temperature-regulated chemical vapor deposition method with ferrocene as an Fe precursor and subsequent annealing. All processes were conducted under ambient pressure conditions without using any high-vacuum equipment. The entire internal micro- and mesopores of the Al2O3 substrate with a bead diameter of ∼2 mm were evenly decorated with Fe x O y H z nanoparticles. The Fe x O y H z /Al2O3 structures showed substantially high activity for acetaldehyde oxidation. Most importantly, Fe x O y H z /Al2O3 with a high surface area (∼200 m2/g) and abundant mesopores was found to uptake a large amount of acetaldehyde at room temperature, and subsequent thermal regeneration of Fe x O y H z /Al2O3 in air resulted in the emission of CO2 with only a negligibly small amount of acetaldehyde because Fe x O y H z nanoparticles can catalyze total oxidation of adsorbed acetaldehyde during the thermal treatment. Increase in the humidity of the atmosphere decreased the amount of acetaldehyde adsorbed on the surface due to the competitive adsorption of acetaldehyde and water molecules, although the adsorptive removal of acetaldehyde and total oxidative regeneration were verified under a broad range of humidity conditions (0-70%). Combinatory use of room-temperature adsorption and catalytic oxidation of adsorbed volatile organic compounds using Fe x O y H z /Al2O3 can be of potential application in indoor and outdoor pollution treatments.

16.
Oncology ; 97(3): 180-188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31330520

RESUMO

BACKGROUND: Hormone receptor-positive breast cancer accounts for nearly two-thirds of breast cancer cases; it ultimately acquires resistance during endocrine treatment and becomes more aggressive. This study evaluated the role of developmental endothelial locus (Del)-1 in tamoxifen-resistant (TAM-R) breast cancer. METHODS: Del-1 expression in recurrent TAM-R breast cancer tissue was evaluated and compared to that in the original tumor tissue from the same patients. Del-1 expression was also evaluated in TAM-R cells by quantitative real-time PCR, western blotting, and enzyme-linked immunosorbent assay. The effects of Del-1 knockdown on the proliferation, migration, and invasion of TAM-R cells was assessed with wound-healing and Matrigel transwell assays. RESULTS: Del-1 was more highly expressed in recurrent breast cancer as compared to the original tumor tissues before initiation of endocrine treatment. Del-1 mRNA was upregulated in TAM-R and small interfering RNA-mediated knockdown of Del-1 suppressed the migration and proliferation of TAM-R cells while partly restoring TAM sensitivity. And the TAM resistance was recovered by knockdown of Del-1. CONCLUSIONS: TAM-R breast cancer is characterized by Del-1 overexpression and tumor progression can be inhibited by Del-1 depletion, which restores TAM sensitivity. Thus, therapeutic strategies that target Del-1 may be effective for the treatment of hormone-resistant breast cancer.


Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Proteínas de Transporte/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Tamoxifeno/farmacologia , Neoplasias da Mama/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , RNA Interferente Pequeno
17.
Anticancer Res ; 39(2): 751-758, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30711954

RESUMO

BACKGROUND/AIM: The anti-cancer effect of high doses of intravenous vitamin C (high-dose vitamin C) remains controversial despite growing evidence that high-dose vitamin C exerts anti-tumorigenic activity by increasing the amount of reactive oxygen species in cancer cells without meaningful toxicities. Therefore, this study attempted to demonstrate the in vitro anti-cancer activity of high-dose vitamin C in combination with conventional treatment in breast cancer. MATERIALS AND METHODS: The pro-apoptotic effects of high-dose vitamin C (1.25 to 20 mM) with or without anti-cancer agents (eribulin mesylate, tamoxifen, fulvestrant, or trastuzumab) were estimated using an MTT assay to measure the cell viability of a variety of breast cancer cell lines (MCF7, SK-BR3, and MDA-MB-231), as well as normal breast epithelial cells (MCF10A). RESULTS: High-dose vitamin C (≥10 mM) significantly decreased cell viability of all breast cancer cell lines, particularly of MCF-7 cells. The catalase activities of MCF7 and MDA-MD-231 cells were also lower than those of MCF10A cells. Moreover, cell viability of both MCF7 and MDA-MD-231 cells was decreased further when combining high-dose vitamin C and eribulin mesylate, and this was also true for MCF-7 cells when combining high-dose vitamin C with tamoxifen or fulvestrant and for SK-BR3 cells when combining high-dose vitamin C with trastuzumab in comparison with chemotherapy or endocrine therapy alone. CONCLUSION: Combining high-dose vitamin C with conventional anti-cancer drugs can have therapeutic advantages against breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Ácido Ascórbico/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Fulvestranto/administração & dosagem , Furanos/administração & dosagem , Cetonas/administração & dosagem , Tamoxifeno/administração & dosagem , Trastuzumab/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7
18.
ACS Appl Mater Interfaces ; 11(12): 11841-11848, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30810305

RESUMO

The advent of 3D printing has had a disruptive impact in manufacturing and can potentially revolutionize industrial fields. Thermoplastic materials printable into complex structures are widely employed for 3D printing. Polylactic acid (PLA) is among the most promising polymers used for 3D printing, owing to its low cost, biodegradability, and nontoxicity. However, PLA is electrically insulating and mechanically weak; this limits its use in a variety of 3D printing applications. This study demonstrates a straightforward and environment-friendly method to fabricate conductive and mechanically reinforced PLA composites by incorporating graphene nanoplatelets (GNPs). To fully utilize the superior electrical and mechanical properties of graphene, liquid-exfoliated GNPs are dispersed in isopropyl alcohol without the addition of any surfactant and combined with PLA dissolved in chloroform. The GNP-PLA composites exhibit improved mechanical properties (improvement in tensile strength by 44% and maximum strain by 57%) even at a low GNP threshold concentration of 2 wt %. The GNP-PLA composites also exhibit an electrical conductivity of over 1 mS/cm at >1.2 wt %. The GNP-PLA composites can be 3D-printed into various features with electrical conductivity and mechanical flexibility. This work presents a new direction toward advanced 3D printing technology by providing higher flexibility in designing multifunctional 3D printed features.

19.
Aesthetic Plast Surg ; 43(2): 498-513, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30635686

RESUMO

BACKGROUND: To overcome unpredictable fat graft resorption, cell-assisted lipotransfer using stromal vascular fraction (SVF) has been introduced. However, its effect on cancer growth stimulation and its oncological safety are debatable. We investigated the effect of SVF on adjacent breast cancer and transplanted fat in a mouse model. METHODS: A breast cancer xenograft model was constructed by injecting 2 × 106 MDA-MB-231-luc breast cancer cells into the right lower back of 40 NOD/SCID mice. Two weeks later, cancer size was sorted according to signal density using an in vivo optical imaging system, and 36 mice were included. Human fat was extracted from the abdomen, and SVFs were isolated using a component isolator. The mice were divided into four groups: A, controls; B, injected with 30 µl SVF; C, injected with 0.5 ml fat and 30 µl saline; group D, injected with 0.5 ml fat and 30 µl SVF. Magnetic resonance imaging and three-dimensional micro-computed tomography volumetric analysis were performed at 4 and 8 weeks. RESULTS: Tumor volume was 43.6, 42.3, 48.7, and 42.4 mm3 at the initial time point and 6780, 5940, 6080, and 5570 mm3 at 8 weeks in groups A, B, C, and D, respectively. Fat graft survival volume after 8 weeks was 49.32% and 62.03% in groups C and D, respectively. At 2-month follow-up after fat grafting in the xenograft model, SVF injection showed an increased fat survival rate and did not increase the adjacent tumor growth significantly. CONCLUSION: Fat grafting with SVF yields satisfactory outcome in patients who undergo breast reconstruction surgery. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Assuntos
Tecido Adiposo/transplante , Neoplasias da Mama/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
20.
Nanotechnology ; 29(17): 175702, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29438103

RESUMO

NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...